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Three novel tetrahydroisoquinoline tetracyclic core frameworks were stereoselectively synthesized. The
key steps included a ring-closing metathesis (RCM)-mediated cyclization and a subsequent intramolec-
ular SN2 N(O)-substituted reaction. This simple method for tetracyclic core synthesis facilitates the fur-
ther exploration of the chemical space of tetrahydroisoquinoline alkaloids.

� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Natural tetrahydroisoquinoline alkaloids.
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Figure 2. Tetrahydroisoquinoline tetracyclic core frameworks 1–3.
The antitumor antibiotics belonging to the tetrahydroisoquino-
line family have been studied thoroughly over the past 33 years,
since the isolation of naphthyridinomycin (Fig. 1) in 1974.1 These
tetrahydroisoquinoline alkaloids contain multichiral stereogenic
centers, and display a range of antitumor activities and antimicro-
bial activity. Therefore, it is meaningful to design and optimize
simple tetrahydroisoquinoline alkaloid analogues as new lead
compounds. To date, several total synthesis of tetrahydroisoquino-
line alkaloids were reported.2 Here, we report a potentially general
and concise method of constructing three densely functionalized
tetracyclic tetrahydroisoquinoline core frameworks (Fig. 2): gen-
eral core 1, 2 (with an ‘anti-N-ring bridge’), and a unique ether-
containing tetracyclic core 3, via the ring-closing metathesis
(RCM) reaction of a-amino acylamide, that we reported previ-
ously,3 and the intramolecular SN2 reaction. This simple method
could be applied to the total synthesis of related natural products
and further exploration of their chemical space.

Two core structures of this family are the quinone a and the aro-
matic core b (Fig. 3). The quinone core a can be easily constructed
by the oxidation of aromatic core b. The goal of this study was to
construct highly strained tetrahydroisoquinoline core frameworks
containing several reactive groups, which could be useful key
intermediates for the further chemical modification.

The synthesis of the intermediate aldehyde 7 is outlined in
Scheme 1. We started from tetrahydroisoquinoline-3-carboxylic
acid ester 4, which was prepared from L-dopa methyl ester by
the Pictet–Splender reaction, as reported previously.4 Protection
ll rights reserved.

.

of the nitrogen of 4 by the Boc group produced 5, which was trans-
formed into the methylated product 6 by treatment with CH3I/
K2CO3 in acetone at room temperature. The reduction of 6 with
LiAlH4 and its subsequent oxidation under Swern conditions pro-
duced the single product 7.

Treatment of 7 with allylic bromide with Zn mediation in aque-
ous NH4Cl medium generated the alcohol 8 with an R configuration
in quantitative yield (diastereomeric ratio >20:1 by 1H NMR)
(Scheme 2).5 However, the addition reaction of 7 with allylmagne-
sium bromide produced alcohol 8 with low diastereoselectivity
(69% yield, S/R = 1/3 by 1H NMR). With 8 in hand, the amine inter-
mediate 9 was readily produced by deprotection with TFA in
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Scheme 3. Synthesis of the tetracyclic core framework 1.
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Figure 3. General structures of the tetrahydroisoquinolines.
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CH2Cl2. The synthesis of the amide intermediate 11 was problem-
atic because of the very low reactivity of the NH at the 2-position.
When the hydroxyl at the 11-position was protected, the conden-
sation reaction did not proceed at all, regardless of the conven-
tional coupling reagent used. However, the reaction of free
hydroxyl intermediate 9 with the active pentafluorophenyl (PFP)
ester 103b and N,N-diisopropylethylamine (DIPEA) as the base in
t-BuOH at 50 �C had taken place smoothly, the product 11 was pro-
duced in an 80% yield based on 65% conversion. After the protec-
tion of the hydroxyl with an acetyl group, the key tricycle 13a
was produced by RCM of the a-amino acrylamine, in a high yield.
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Scheme 2. Synthesis of the key intermediates 14a and 14b.
The recyclable Hoveyda catalyst was better than the Grubbs II cat-
alyst. After the deprotection of the acetyl group, the product 14a
was conveniently transformed to its isomer 14b, when treated
with Dess–Martin periodinane (DMP), followed by its reduction
with NaBH(OAc)3 (83% in two steps, S/R = 19/1 by HPLC). The con-
figurations were confirmed by nuclear Overhauser effect (NOE)
analysis of their acetylates. The two epimers 14a and 14b were
easily separated by silica-gel column chromatography and were
used in the subsequent synthesis of compounds 1 and 2,
respectively.

The alcohol 14b was transformed to methanesulfonate 16b
with a minor alkene byproduct formed simultaneously under these
reaction conditions, as a result of the elimination of the MsO group
(Scheme 3). Compound 16b was hydrogenated in the presence of
Crabtree’s catalyst,6 with hydrogen bubbled through a solution of
CH2Cl2, forming the anti product 17 in a yield of 94%. After the
deprotection of the benzyl group using Pd(OH)2 and the Boc group
in TFA/CH2Cl2, the resulting primary amine was instantly dissolved
in ethanol and heated to 50 �C in the presence of AcONa,7 forming
the tetracyclic quinone 1 in a 65% yield.8

Mesylate 16a was obtained under similar conditions, in quanti-
tative yield, because there was no elimination. Subsequent hydro-
genation with 20% Pd(OH)2 in methanol produced a mixture of 18
and its diastereomer in a ratio of 8:1, and they were separated by
silica-gel column chromatography (Scheme 4). Deprotection of the
Boc group, followed by treatment with AcONa in C2H5OH, as
shown in Scheme 3, produced the reverse N-substituted product
2 in a 68% yield.9

Interestingly, when compound 18 was treated with NaH in
MeTHF, the intramolecular O-substituted SN2 reaction produced
the unique ether-containing tetracyclic product 3 in a 59% yield.10

Compound 3 represents a novel framework of tetrahydroisoquino-
line, which has never been reported before.
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In summary, we have developed a simple and efficient synthesis
of the tetracyclic core frameworks 1, 2 of the tetrahydroisoquino-
line alkaloids containing the highly strained bicyclo[3.2.1]octane
framework, and a unique ether-containing tetracyclic core 3. This
synthesis uses the powerful RCM reaction for ready access to the
a-amino a,b-unsaturated caprolactam 13a, and the intramolecular
SN2 reaction of the lactams 17 and 18 to produce the highly
strained tetracycles. Further structural modifications to com-
pounds 1, 2, and 3 to explore their chemical space are in progress
in our laboratory.
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